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ABSTRACT

Adaptive waveform inversion (AWI) reformulates the misfit
function used to perform full-waveform inversion (FWI), so that
it no longer contains local minima related to cycle skipping. It
does this by finding a model that drives the ratio of the predicted
and observed data sets to unity rather than driving the difference
between these two data sets to zero as is the case for conven-
tional FWI. We apply AWI to a 3D field data set acquired over a
pervasive gas cloud in the North Sea, comparing its performance
with that of conventional FWI in a variety of circumstances.
When starting inversion from 3 Hz, and using a good starting
model obtained from reflection tomography, FWI and AWI gen-
erate similar models although the FWI result contains edge ar-
tifacts that are not produced by AWI. However, when the
starting frequency is increased to approximately 6 Hz, or when

the starting model is less accurate, FWI fails to recover a good
model whereas AWI continues to converge. When both of these
conditions apply, FWI fails comprehensively, leading to a model
that is significantly worse than the starting model, whereas the
AWI result remains largely unaffected. We applied Kirchhoff
depth migration to the fully-processed data using the FWI result
obtained following reflection tomography, and using the AWI
result obtained from a simple one-dimensional starting model.
We use the resulting migrated volumes, together with measures
of residual moveout throughout the volume, to show that the
AWI result from a simple starting model is at least as good
as the FWI result obtained following tomography. We conclude
that AWI is robust in the presence of cycle skipping on this 3D
field data set, and can proceed successfully from a less-accurate
starting model, and from a higher starting frequency, in circum-
stances in which FWI fails completely.

INTRODUCTION

Full-waveform inversion (FWI) is a seismic data inversion tech-
nique that seeks to recover a high-resolution model of subsurface
physical properties by minimizing the misfit between an observed
data set and an equivalent data set simulated using the recovered
model. There are many potential ways to measure such a data misfit.
In this paper, we explore the application of the measure of misfit
that is provided by adaptive waveform inversion (AWI), introduced
by Warner and Guasch (2014, 2016), to a 3D anisotropic field data
set, and we show that this can have significant advantages over
more-established measures. In particular, this new measure appears
to 96allow the relaxation of the requirement to have low-frequency

field data and a high-quality starting model, which are normally
prerequisites for successful FWI.
Most current implementations of FWI are based upon the prin-

ciples and ideas formulated by Lailly (1983) and Tarantola (1984).
Computational limitations restricted the initial application of FWI
to simple 1D and 2D synthetic examples (Gauthier et al., 1986;
Mora, 1987). Subsequent advances in the FWI algorithms and in
the computational hardware, enabled the application of the tech-
nique to more-realistic synthetic problems (Pratt et al., 1996, Pratt,
1999), to 2D field data (Igel et al., 1996), and ultimately to 3D field
data sets (Ben-Hadj-Ali et al., 2008; Sirgue et al., 2008; Warner
et al., 2008). Early progress was made in two dimensions in
the sparse frequency domain (Pratt et al., 1998; Pratt, 1999).
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Three-dimensional applications to field data (Plessix and Perkins,
2010; Vigh et al., 2010; Warner et al., 2013; Routh et al., 2017)
have established time-domain 3D anisotropic acoustic FWI as a
standard tool for high-resolution velocity-model building and depth
imaging. In parallel with these developments, regional and global
seismologists have applied FWI and related techniques to earth-
quake data to recover elastic models of the earth at larger scale
lengths (Fichtner et al., 2008, 2009; Tape et al., 2010).
Under the right circumstances, which include optimal acquisition

geometry, availability of low frequencies in the field data, and a
good starting model, FWI can resolve subsurface models accurately
at all scale lengths longer than about half the local seismic wave-
length (Virieux and Operto, 2009). This represents a substantial im-
provement over methods that are based upon matching traveltimes,
for example, traveltime tomography, where the theoretical resolu-
tion limit is related to the size of the Fresnel zone rather than to
the wavelength. FWI also benefits from minimal data preprocessing
when compared to conventional velocity analysis using, for exam-
ple, residual-moveout reflection traveltime tomography.
Although it can bring improved resolution and fidelity, one of the

main limitations of FWI is the phenomenon known as cycle skip-
ping. This occurs when the starting model is unable to predict data
that match the observed field data to an accuracy of better than half a
cycle at the lowest usable frequencies available within the data set.
In these circumstances, conventional FWI is liable to become
trapped within a local minimum in the misfit function, for which
the recovered model produces predicted data of which some portion
is shifted in time with respect to the observed data by approximately
an integer number of cycles. Cycle skipping during FWI is normally
addressed by using especially low-frequency field data, by using an
accurate starting velocity model, and by rigorous quality control
using experienced practitioners.
The central purpose of AWI is to reformulate the waveform inver-

sion problem so that it is no longer affected by cycle skipping. Sev-
eral other authors have also made this attempt. Of these, the methods
most closely related to AWI include van Leeuwen and Mulder (2008,
2010), who use an objective function that penalizes energy at nonzero
lag in the crosscorrelation of the observed and predicted data sets; the
mathematics of this method has similarities to those of AWI, as does
the approach of Luo and Sava (2011). Ma and Hale (2013) design an
objective function based upon dynamic warping to match the ob-
served and predicted data. AWI uses a similar rationale but replaces
nonlinear dynamic warping by linear least-squares matching filters.
Biondi and Almomin (2012, 2014) present a method called tomo-
graphic FWI that introduces an additional nonphysical dimension
into the subsurface velocity model such that the model always pre-
dicts the data accurately; the inversion then acts to focus this non-
physical extension out of the final model. This method provided
the initial motivation for AWI, which also introduces a nonphysical
extension, which must be focused out of the final result. Using wave-
field-reconstruction inversion, van Leeuwen and Herrmann (2013,
2015) use a different nonphysical model extension, in which the
wavefield no longer exactly obeys the wave equation, and the inver-
sion again acts to find a model for which this nonphysical feature
progressively disappears. Huang and Symes (2015) introduce a
method similar to AWI, but that use a source that is extended in time
and space. Their approach suggests that there is a continuum of meth-
ods that extends from that of van Leeuwen and Herrmann (2013,
2015), through Huang and Symes (2015), to AWI as presented here.

Several authors have proposed FWI schemes that seek to over-
come cycle skipping by dealing directly with explicit phase or time
differences. Among these, Bozdağ et al. (2011) use signal enve-
lopes, which are inherently lower frequency than the raw data and
are therefore less subject to cycle skipping, Shah et al. (2012) and
Alkhalifah and Choi (2012) attempt to unwrap phase differences at
single frequencies in space, and Jiao et al. (2015) present the
method of adjustive FWI, which seeks to minimize explicit time
shifts between specific arrivals. Métivier et al. (2016) use the con-
cept of optimal transport distance to quantify the misfit between
predicted and observed data sets.
Although there is diversity in how each of these methods, includ-

ing AWI, formulates the waveform-inversion problem, they all
share the common feature that they define a new objective function
that, under appropriate circumstances, does not pass through a mini-
mum when the predicted and observed data sets differ by a wave
cycle. Some of these methods appear unaffordably expensive in
three dimensions, some lack robustness when applied to compli-
cated or noisy data sets, and some suffer from new local minima
that are unrelated to cycle skipping but that are peculiar to particular
methodologies. It remains to be seen which of these methods will
prove to be sufficiently robust, efficient, and effective, so that they
can be applied with confidence to a wide range of field data sets and
problems. The thesis advanced in this paper is that AWI does have
those desirable characteristics.
We apply AWI to a 3D ocean-bottom North Sea anisotropic field

data set. AWI uses a measure of data misfit that does not have sec-
ondary minima associated with cycle-skipped solutions; conse-
quently, the method is immune to the effects of cycle skipping.
This immunity does not however mean that AWI will also have im-
munity to the many other causes of secondary local minima that can
affect conventional FWI, and of course any new method may also
introduce new problems, or new categories of local minima, that are
peculiar to itself when applied to field data. Note that, by cycle skip-
ping, we mean an effect that is produced by the finite bandwidth of
the observed seismic data, in which there is a misalignment in time
of a packet of energy in the predicted seismic data by an approx-
imately integer number of wave cycles such that it produces an ap-
parent fit to the observed data. Cycle skipping in FWI is then
necessarily overcome by extending the bandwidth of the observed
data to lower frequencies. In contrast, the misalignment of one
arrival with another to which it is unrelated, for example, the mis-
identification of a surface multiple as a primary arrival, will not nor-
mally be overcome by extending the bandwidth of the data
downward. If such a misalignment produces a local minimum in
the conventional FWI objective function that cannot be overcome
by a reasonable downward extension of the bandwidth, then this is
not cycle skipping as that term is conventionally applied and as we
use the term here. Warner and Guasch (2016) show that AWI
avoids conventional cycle skipping when applied to 2D synthetic
data in challenging circumstances when conventional FWI fails
entirely. However, the literature of FWI is replete with proposed
methods that work in principle and on synthetic inverse-crime data
sets, but that fail completely when they are applied to real field
data sets. Consequently, it is important to demonstrate for any
new method that it is affordable and effective on field data, and
that its theoretical advantages can indeed be translated into prac-
tical outcomes; testing that hypothesis for AWI is the central pur-
pose of this paper.
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We compare the performance of AWI with conventional FWI in a
sequence of increasingly challenging scenarios, ranging from the
most benign, where a good starting model and low frequencies
are available, to the most challenging where the starting model
and data are problematic. Our results demonstrate insensitivity to
cycle skipping and show that no new problems appear. They also
show that AWI is less troubled by edge artifacts associated with the
finite extent of the receiver array and the finite extent of the source
coverage. We show that AWI can begin from a simple smooth start-
ing model generated without recourse to tomography, and that the
model subsequently generated by AWI provides a basis for depth
migration that is significantly superior to traveltime tomography.
The structure of the paper is as follows: In a short overview, we

outline the mathematics that underpins the AWI algorithm. We de-
scribe the field data set, and its preparation for FWI and AWI. We
describe a sequence of numerical tests in which we apply FWI and
AWI to the same data under increasingly challenging circumstan-
ces, and we analyze the resultant velocity models. We use the start-
ing and recovered velocity models to depth-migrate the reflection
data, analyzing the residual moveout on migrated common-image
gathers and the resultant migrated stacked volumes. The results
demonstrate significant uplift in the migrated images following
waveform inversion, and they show that AWI, beginning from a
simple 1D velocity model, is as good as or superior to, FWI begin-
ning after several rounds of reflection tomography. Finally, we
present our conclusions and suggest our interpretation of the results.

AWI THEORY

In general, waveform inversion aims to minimize an objective
function f that measures the misfit between two data sets, or alter-
natively to maximize an objective function that measures the simi-
larity of two data sets. The two data sets are the observed field
data d and the equivalent predicted data p generated by solving
the wave equation for a model m of the subsurface. The only differ-
ence between conventional FWI and AWI is the way in which this
data misfit f is defined. This difference leads directly to differences in
the respective adjoint sources that must be back propagated for each
of the two methods. For FWI, the adjoint source δs is the data residual
formed by the difference of the two data sets (p − d). However, for
AWI, the adjoint source is a more complicated entity. A more com-
pete account of the mathematics of AWI is given by Warner and
Guasch (2016); here, we present only a summary of the key ideas.
In conventional FWI, the misfit is defined as

fFWI ¼
1

2
kp − dk2; (1)

where p is a column vector containing the predicted data, d is a
vector containing the observed data, and k · k represents the L2-
norm. When the objective function fFWI is minimized with respect
to the model m, the two data sets p and d become more alike, and
the model that was used to calculate p is then assumed to be a better
representation of the subsurface. In an idealized case, the two data
sets become identical, and the objective function becomes zero, at
the global minimum. When applied to field data, the objective func-
tion is unlikely ever to reach zero because there will be noise in the
observed data, the physics used to simulate the wave equation is
likely to be imperfect, and various forms of model regularization
are likely to be applied to mitigate the under-determined and ill-

posed aspects of the problem. More significantly, because seismic
data are oscillatory and of a finite bandwidth, simple sample-by-
sample differencing of two data sets, where parts of one resemble
parts of the other shifted in time, will tend to lead to cycle-skipped
local minima in the objective function whenever the starting model
is too far removed from the true model. In essence, it is the minus
sign in equation 1 that causes the problem of cycle skipping in con-
ventional FWI.
AWI defines the misfit between the observed and predicted data

differently. Conceptually, rather than attempting to drive the differ-
ence of the two data sets to zero, AWI seeks to drive their ratio to
unity. In the idealized case, when the two data sets are identical, their
difference will be zero and their ratio will be unity, and both ap-
proaches will have reached the same global minimum. However,
the path that a local, linearized, gradient-descent inversion scheme
will follow from a starting model toward this global minimum will
depend upon the detailed shape of the objective function; conse-
quently, one approach may become trapped at a particular local mini-
mum that does not appear within the objective function of the other.
The ratio that AWI uses is not a sample-by-sample ratio in the time

domain; rather, it is the ratio at each frequency in the temporal Fourier
domain. In addition, this ratio must be stabilized so that it does not
involve dividing by noise-dominated numbers close to zero. Because
division in the frequency domain represents deconvolution in the time
domain, and because FWI and AWI use a least-squares formulation,
AWI can be described and implemented using damped least-squares
convolutional matching filters, that is, Wiener filters. Described this
way, AWI designs a suite of Wiener filters that match one data set to
the other, and then it seeks to modify the earth model so that these
filters tend toward unit-amplitude delta functions at zero lag. In this
study, we design and apply these Wiener filters trace-by-trace, using
a different filter for every trace in the data set.
The Wiener filter w that matches an observed trace d into a

predicted trace p is given by

w ¼ ðDTDþ μIÞ−1DTp; (2)

where D is a Toeplitz matrix with d in its columns arranged such
that Dx represents the convolution of d with a vector x, and μ is a
small positive number that stabilizes the deconvolution represented
by the matrix inverse in equation 2. This well-known equation rep-
resents the crosscorrelation of the two data sets deconvolved by the
autocorrelation of one of them. The exact value of μ is not important
for AWI; in this study, we used a value that corresponds to a
strengthening of the zero-lag of the autocorrelation matrix by 1%.
The filter w must now be driven toward a zero-lag delta function.

There are several ways to achieve this; the one that we adopt here is
to define an objective function of the form

fAWI ¼
1

2

kTwk2
kwk2 ; (3)

where T is a diagonal matrix that acts to weight w as a monotonic
function of the magnitude of lag. If this weighting function has a
value of zero at zero lag and increases with the magnitude of lag,
then it will act as an annihilator, having a global minimum value of
zero when w is a zero-lag delta function. Minimization of the ob-
jective function in equation 3 will drive the coefficients within w
toward zero lag, drive p toward d, and, provided that the starting
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model is within the global basin of attraction, drive the model m
toward the true earth model. The exact form of the weighting func-
tion T does not appear to be significant for effective AWI — a
simple linear weighting with the magnitude of the temporal lag
can be sufficient, but we have found that a more-rapid variation with
lag tends to speed convergence. Here, we used a Gaussian weight-
ing for T, centered on zero lag, with a standard deviation of approx-
imately 5% of the trace length, leading to an objective function that
should be maximized; T was not varied during the inversion.
After discretization, for example, with finite differences, the

time-domain wave equation can be written as

Au ¼ s; (4)

where A is a discrete wave equation operator, and u is the wavefield
generated at all times and all points in the model by a source s. The
predicted data p are then related to the wavefield by a restriction
operatorR that selects the subset of the full wavefield at the receiver
positions; thus,

Ru ¼ p: (5)

With this formulation, all FWI-like algorithms lead to an expres-
sion for the gradient of the objective function with respect to the
model parameters that can be written as

∂f
∂m

¼ −uT
�
∂A
∂m

�
T

A−TR−Tδs; (6)

where the adjoint source δs depends upon the observed and predicted
data (Warner and Guasch, 2016). In practical terms, reading equa-
tion 6 from right to left describes what must be done to compute
the gradient for a single shot record. It says: Find the adjoint source
for that shot record, inject this into the model, propagate it backward
in time through the model, modify this wavefield in a way that de-
pends upon the form of the wave equation and the model parameters,
and, finally, crosscorrelate this modified wavefield in space and time
with the corresponding forward wavefield generated by the true
source and take the zero lag. To find the gradient for the entire data
set, these single-shot gradients must be stacked over all sources.
For conventional FWI, the adjoint source is given by the residual

wavefield; thus,

δsFWI ¼ p − d: (7)

But for AWI, the adjoint source is given by a more complicated
expression that involves the Wiener filter w and the lag-weighting
T (Warner and Guasch, 2016); thus,

δsAWI ¼ DðDTDÞ−1
�
T2 − 2fAWII

wTw

�
w: (8)

In practical terms, reading equation 8 from right to left describes
how to compute the AWI adjoint source for a single source-receiver
pair. It says, use equation 2 to find the Wiener filter that matches the
observed data to the predicted data, weight each coefficient in this
filter by the expression in square brackets that depends upon the
magnitude of its temporal lag and upon the current value of the ob-
jective function and the zero-lag of the autocorrelation of the filter,

and then deconvolve this by the autocorrelation of the observed data
and convolve it with the observed data. This complicated-sounding
operation contains only local 1D operations, and it is cheap to com-
pute. Having obtained the adjoint source for AWI, the inversion pro-
ceeds exactly as it would for conventional FWI.
There are two other issues with which we might want to be con-

cerned when implementing AWI in a practical computer code: the
AWI Hessian matrix is not the same as the FWI Hessian, and the
AWI objective function is more nonlinear than is the FWI function
— that is, small changes in the model are approximately linearly
related to changes in the FWI residuals, but they are less linearly
related to changes in the AWI residuals. The former issue requires
more care when preconditioning the AWI gradient with some
approximation to the Hessian, and the latter issue requires more care
when calculating the magnitude of the model update during the
AWI step-length calculation. Another way to state the principle dif-
ference between FWI and AWI is that the region of convexity of the
objective function is typically wider for AWI, but the region over
which the objective function is approximately parabolic is typically
wider for FWI. Consequently, AWI will normally converge toward
the global minimum starting from less good models than are re-
quired for FWI, but driving AWI toward the global minimum will
typically require a more carefully designed minimization procedure
than does FWI.
In the results presented below, we solve the 3D VTI anisotropic

acoustic wave equation using time-domain finite-differences that
are 10th-order in space and 4th-order in time. We performed two
suites of inversions using a different minimization scheme in each
suite. In the first suite, we used a simple diagonal approximation to
the Hessian during FWI and AWI to precondition the gradient, and
we damped this preconditioning quite strongly during AWI. We
used steepest descent on the preconditioned gradient and a simple
linear step-length calculation. In the second suite, used to obtain the
FWI and AWI models for depth migration, we did not apply a Hes-
sian at all. Instead, we used conjugate gradients on the raw gradient
together with a quadratic step-length calculation, using multiple test
steps where necessary to ensure that the minimum in the objective
function was bracketed properly by these steps. Both minimization
schemes produced substantially the same end results.

RESULTS

Data set

The data used in this study come from a field located in the North
Sea. The depth of the reservoir is approximately 3 km, overlain by
an extensive well-confined gas cloud (Granli et al., 1999). The ver-
tical migration of the gas is thought to be the result of piercement of
the antiformal structural high caused by an underlying salt diapir.
The presence of gas above the reservoir dramatically decreases the
quality of the seismic data below; the gas-charged zone has a low P-
wave velocity and a high effective attenuation, and both properties
appear to degrade the image. Four wells have been drilled on this
site: two outside, one at the edge, and one through the gas cloud.
Warner et al. (2013) provide details.
The data were acquired in 2005. Three swaths of eight ocean-

bottom cables were deployed (Figure 1). The cable length was
6 km, the spacing between the cables was 300 m, and each contained
4C sensors every 25 m. The source lines were shot perpendicular to
the cables using air guns at a depth of 6 m. Dual sources were used
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in the flip-flop shooting mode. Each source consisted of a
0.0644 m3 (3930 in3) air-gun array. The lateral separation between
sources was 75 m, and each fired every 50 m inline. The area
covered by each swath was 120 km2, and the three swaths com-
bined covered a total of 180 km2. The total number of 4C receivers
in the final data set is 5760, and the total number of shots is 96,000.
The survey provides offsets of approximately 7 km with good azi-
muthal coverage and maximum offsets of up to 11 km with reduced
azimuth and fold, corresponding to the sources in the corners of the
shooting area.
For the inversion, only the hydrophone data were used. These

data were low-pass filtered, using an Ormsby filter rolling off from
5 to 7.5 Hz. The raw data have an adequate signal-to-noise ratio for
FWI down to frequencies less than 3 Hz. The filtered data were
muted ahead of the first arrivals, and a bottom mute was applied
at a short offset to remove low-velocity, low-frequency Scholte
waves. No other preprocessing of the raw field data was applied
prior to inversion — no deghosting, no demultiple, no debubble,
no signature removal, no denoise, and no pz-summation. Refracted
arrivals, postcritical and precritical reflections, and all ghosts, multi-
ples, and the original source waveform were retained within the data
to be inverted. One in four of the original receivers were selecting
giving a 100 m inline and 300 m crossline separation. One in three
original sources were selected, giving an approximately 100 m shot
spacing in both directions. Source-receiver reciprocity was applied
leading to a final data set that contained 1440 reciprocal sources and
approximately 20 million source-receiver pairs. A suitable low-fre-
quency source wavelet was extracted from the filtered field data,
and it was refined and tested using forward modeling following
the procedure described in Warner et al. (2013). Extraction of
the wavelet prior to FWI and AWI requires only that the properties
of the water column, free surface, and water-bottom reflectivity can
be estimated from the raw field data; the wavelet estimate does not
use the tomography or other subsurface velocity model. Figure 2
shows the original full-bandwidth data, the muted, subsampled,
low-pass filtered data ready for inversion, and the corresponding
low-frequency wavelet. The long multicyclic wavelet results from
the properties of the low-pass filter used to preprocess the field data.
This preprocessed data set and wavelet were used as input for all
FWI and AWI inversions described here.

Test inversions

In a suite of tests, we ran AWI and FWI on the same combina-
tions of input data and starting model. Here, we show four combi-
nations in total:

1) low starting frequency and a good 3D starting model
2) higher starting frequency and a good 3D starting model
3) low starting frequency and a simple 1D starting model
4) higher starting frequency and a simple 1D starting model.

Our expectation is that AWI and FWI will provide similar high-
quality results for the first combination, but that FWI will begin to
fail for the more difficult problems because of cycle skipping,
whereas AWI should still be able to proceed even as the input data
and starting model become less suitable.
We do not, in this paper, explore the importance of, or inversion

for, anisotropy; all of the inversions shown used the same 1D VTI
model of anisotropy described in Warner et al. (2013), and this

remained fixed throughout the inversion. We did not explicitly
correct the data for the effects of attenuation, nor did we include
attenuation in the forward modeling during inversion. The inversion
code balances amplitudes in various heuristic ways, an approach
that serves to mitigate systematic amplitude variations produced
by otherwise uncompensated anelastic attenuation, density varia-
tions, elastic effects, and short-wavelength changes in anisotropy,
and to balance the relative importance of different traveltimes, off-
sets, and phases in the data. Some form of amplitude matching be-
tween the predicted and observed data is normally helpful during
FWI of field data to prevent leakage of other parameters into the
acoustic velocity model, but the exact form of that matching is
not critical; details of the method applied here are given in Warner
et al. (2013). The same approach to amplitude balancing and regu-
larization was used during FWI and AWI. Reflections and refrac-
tions are included in the data to be inverted, and the amplitude
balancing also helps to ensure that both types of arrival contribute
to the final inverted model. In practice, however, the low and
intermediate wavenumbers in the recovered velocity model are ex-
tracted predominantly from the refracted and postcritically reflected

Figure 1. Acquisition geometry and model size. North–south lines
show the ocean-bottom cables acquired in three swaths of eight ca-
bles each; yellow indicates the three corresponding patches of shots;
white ellipse indicates the approximate location of the gas cloud
surrounded by four wells. The filled black circles show the subset
of original sources and receivers that are used in the inversion.
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arrivals with precritical reflections contributing principally only to
the high-wavenumber detail. We applied smoothing to the model
updates at a scale length of about half the local seismic wavelength,
and we used no formal model regularization of any kind be-
yond that.
We obtained the good 3D starting velocity model from the origi-

nal processing contractor. It was built using multiple rounds of
anisotropic reflection tomography, guided by wells, applied to
the pz-summed, deghosted, and demultipled data with some manual
intervention to delimit the lateral extent of the gas cloud. We ob-
tained the simple 1D starting model by matching the moveout in
one corner of the data set and extending this over the entire model
in one dimension. The good 3D model contains a reasonable initial
representation of the low-velocity gas cloud; the 1D model does not
contain any version of this cloud. The good 3D model is the same as
that used to start the inversion in Warner et al. (2013). Vertical and
horizontal slices through the two models are shown in Figure 3.
For the low starting-frequency inversions, we ran the inversion in

six passbands, where the low-pass filter applied increased gradually
from 3 to 6.5 Hz. In each case, the nominal frequency represents the
corner frequency of a low-pass filter that rolls off at approximately
48 dB per octave; given the sharp roll off of the field data at low
frequency, in practice, this means that the inverted data within each
passband have a rather narrow bandwidth with a peak frequency
coinciding closely with the nominal frequency. Starting at a low
frequency and gradually increasing the passband is the conventional
way to run time-domain FWI; it begins at a low frequency to mit-
igate cycle skipping. For the higher starting-frequency inversions,
we ran every inversion using the 6.5 Hz filter. Some longer offset
portions of the field data appear to be cycle skipped with respect to

modeled synthetic data at 6.5 Hz, even with the good 3D starting
model; therefore, we would not expect FWI to work well in these
circumstances. We split the data into 18 random subsets, each
containing just 80 reciprocal sources. Within each passband, we in-
verted each of these subsets in turn before moving to the next
passband.

Low starting frequency, and a good 3D starting model

This represents the standard run, serving as a benchmark against
which the others can be measured. We do not expect this run to be
cycle skipped, and AWI and FWI should prove to be equally suc-
cessful. For this test, we used one iteration per source at each of six
frequency bands, opening up the top of the passband progressively
from 3 to 6.5 Hz; we then ran the final passband a second time,
giving seven iterations per source in total. As described above,
we used 18 subiterations per passband, each run over one-18th
of the available sources giving 126 subiterations in total.
In previous studies of this data set, we have found that this level

of computational effort represents a sensible commercial compro-
mise between cost and accuracy for conventional FWI; this does not
represent the best possible fit to the observed data, nor does it re-
present a fit to within the estimated noise level of the data. Fitting
highly redundant multichannel 3D reflection data to the noise level
can require many thousands of iterations of conventional FWI while
producing no significant difference in subsequent depth migrations,
and is unlikely ever to be commercially justified. In another study,
we have run several thousand iterations of FWI and AWI on this
data set; when FWI and AWI are successful, this large number
of iterations does not improve the practical outcome significantly,

Figure 2. Hydrophone shot record. (a) Full-
bandwidth raw data. (b) Preprocessed for inver-
sion. (c) Corresponding low-frequency source
wavelet.
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and when FWI has become trapped in a local cycle-skipped mini-
mum, using a large number of iterations alone does not enable it to
escape. We have observed that AWI often benefits from more iter-
ations than FWI, presumably because the AWI objective function is
less parabolic. In practice, however, we would almost never choose
to run large numbers of AWI iterations on a field data set; rather, we
would run sufficient AWI iterations to ensure that the resultant
model was no longer cycle skipped and then switch to conventional
FWI to complete the process, moving FWI progressively to a higher
frequency. We do not follow that practical workflow in this study
because here we are interested in directly exploring the differences
between AWI and FWI, rather than devising an optimal practical
combination between them.
Figure 4 shows the vertical and horizontal depth slices through

the models recovered by FWI and AWI. Above the high-velocity
chalk, the results are similar in the central region of the model
and the geometry and absolute velocity of the recovered gas cloud
appears correct. Warner et al. (2013) show that an FWI model very
similar to this one predicts the field data closely; accurately migrates
the reflection data and flattens the gathers; and matches the wells,
the boundaries of the gas cloud, and the geometry of the migrated
reflectors. We therefore believe that this benchmark lies close to the
true model.
The recovered FWI and AWI models diverge toward the lateral

edges of the model, and within the high-velocity chalk layer below a

depth of about 3000 m. The lateral differences are illustrated in the
FWI model by the low-velocity (green) features seen in the bottom
left of Figure 4a and 4c; these are edge effects produced by the finite
extent of the acquisition geometry and are a common feature of FWI
models that can be partially overcome by appropriately designed
model regularization. The obvious artifacts seen in the FWI model
within the chalk are an extension of these lateral edge effects to
greater depths, where they represent an edge to the maximum depth
of penetration related in turn to the maximum offset available in the
data set. Before migrating with the FWI model, these artifacts must
be removed, for example, by regularization toward the starting
model in the affected areas.
Interestingly, AWI does not suffer as significantly from these

edge effects, either laterally or in the chalk. This means that the
AWI-recovered model remains accurate to a greater depth and
closer to the edges of the recovered model. Both models also show
an imprint of the acquisition geometry at a fine scale; this fine ac-
quisition footprint is stronger in the AWI result than in the FWI-
recovered model. The footprint is relatively easy to remove from
the model, either in postprocessing or by regularization during
the inversion; in the model shown, the footprint is especially marked
near top chalk, although it is less intense than the edge effects in-
troduced by FWI in the chalk.
In summary, when the starting model is accurate and the

inversion begins at low frequencies, AWI and FWI produce similar

Figure 3. Starting models. Left: good 3D model
derived from the tomography. Right: simple 1D
model — the gas cloud is not present in the
model. Top: horizontal slice at 1200 m depth.
Middle: horizontal slice at 2400 m depth. Bottom:
vertical slice through the gas cloud. Note that the
color-scale limits are different for the horizontal
and vertical slices.
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outcomes that differ only in their edge effects and acquisition foot-
print. AWI suffers less from edge effects produced by the finite ex-
tent of the source and receiver arrays and by the finite offset; FWI
suffers less from a fine-scale acquisition footprint produced by the
finite spacing of sources and receivers.

Higher starting frequency, and a good 3D starting model

In this test, the starting model was unchanged, but all iterations
were run at the full processed bandwidth of 6.5 Hz; the peak fre-
quency in this case is approximately 5.5 Hz. We expect AWI to
proceed satisfactorily in this case, but FWI may begin to be im-
pacted by cycle skipping in some parts of the data set. In this test,
we increased the total number of iterations per source from 7 to 14.
This increase is desirable because the inversion begins from a model
that is effectively further from the true answer than in the previous
test. Even though the initial model has not changed in absolute
terms, it predicts data that are further from the observed data when
that distance is measured in terms of wave cycles at the starting
frequency. Consequently, the inversion has a longer effective path
to navigate when it begins from a higher frequency, and this typ-
ically requires more iterations to reach the same global minimum.
Figure 5 shows the recovered models. The model recovered by

AWI is little changed from that shown in Figure 4 demonstrating
that AWI is able to proceed successfully from a higher starting fre-
quency. In contrast, the FWI model in Figure 5 has begun to

degrade; the edge artifacts have moved closer to the center of
the model, and the gas cloud is less saturated and is distorted with
respect to the benchmark model. The differences are not great, how-
ever, and although some small portion of the data is cycle skipped,
the reminder of the data operate to push the model broadly in the
desired direction.

Low starting frequency, and a simple 1D starting model

In this test, we retained the low starting frequency, but we used a
less-accurate model to begin. This starting model contains no trace
of the low-velocity gas cloud; however, the background model still
gives reasonably accurate arrival times away from the gas cloud. We
ran the inversion twice, iterating from 3 to 6.5 Hz, then continuing a
second run as a warm restart, repeating the iterations from 3 to
6.5 Hz, giving 14 iterations per source in total. As in the previous
test, this increase is necessary because the inversion begins further
from the true model than does the benchmark.
Figure 6 shows the results. The AWI model is still largely unaf-

fected, although it does lose some absolute accuracy with increasing
depth through the gas cloud. The geometry and saturation of the gas
cloud are well-recovered even though there is no gas cloud in the
starting model — the recovered cloud is built entirely by the in-
version. As we will see later, a poor starting model, similar to this,
does not migrate the field data accurately nor does it result in flat
gathers. In production use, we would typically run AWI on a model

Figure 4. Models recovered using a low starting
frequency and a good 3D starting model. Left:
FWI. Right: AWI. Color scales and slices are
the same as Figure 3. Recovery of the gas cloud
is similar by both methods, but edge-related arti-
facts are worse, laterally and in depth, in the FWI
result. The AWI result has an enhanced short-
wavelength acquisition footprint when compared
to FWI.
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of this sort until cycle skipping was no longer problematic and then
smooth the model and continue the inversion to completion using
FWI. We have not followed that enhanced workflow in this exam-
ple, and we show the pure AWI and pure FWI results in Figure 6.
In contrast to AWI, the FWI result in Figure 6 is badly degraded.

The gas cloud is now significantly under-saturated, and FWI is not
capable of building the cloud adequately from a model that does not
already contain some reasonable representation of it. At greater
depth, the gas cloud is barely recovered at all — this is especially
clear in the vertical section in Figure 6e. The FWI result is also
badly contaminated by edge effects in the shallow section and
by shorter-wavelength artifacts in the deeper section. The latter
are likely caused by conflicting updates produced by parts of the
data that are cycle skipped with respect to other parts that are
not cycle skipped. The results of this test clearly demonstrate that
AWI is capable of beginning the inversion from a less accurate start-
ing model for which some of the data are cycle skipped and for
which the FWI is only able to recover a poor, under-saturated, noisy
version of the true model.

Higher starting frequency, and a simple 1D starting model

This is the most challenging case that we examine; all iterations
are run at the full 6.5 Hz bandwidth, and the starting model is 1D.
Because we start further from the true model in terms of the starting

frequency than in either of the last two tests, we ran a total of 21
iterations per source for this test, all at 6.5 Hz.
Figure 7 shows the results. For AWI, the outcome above the top

chalk is similar to the previous result; the geometry of the gas cloud
is properly recovered, its absolute velocity is fully saturated in its
upper portion, and this reduces only a little with increasing depth.
There are now, however, significant artifacts below the top chalk;
these develop relatively early in the inversion before the gas cloud is
fully formed. In production, we would deal with these by smoothing
or constraining the updates strongly within the chalk until the gas
cloud had developed, relaxing the constraints as the inversion pro-
ceeds when we would also likely switch from AWI to pure FWI. We
have not followed that workflow in the results shown here.
In contrast to AWI, FWI goes badly wrong in this test. The gas

cloud is poorly recovered, the faster left side of the benchmark
model at 1200-m depth is now replaced by a region of spurious
lower velocity, and the deeper part of the model contains little struc-
ture in the update that is real. The slow region on the left has been
produced by pervasive cycle skipping of the predicted data from this
area, which generates a gradient contribution that has the wrong
sign — the recovered velocity thus decreases when the model ac-
tually requires an increase. The FWI-generated model here is sig-
nificantly worse than the starting model, although of course the
objective function has still been driven down as the inversion
has moved toward, and has become trapped within, a deep local

Figure 5. Models recovered using a high starting
frequency and a good 3D starting model. Left:
FWI. Right: AWI. The AWI result is similar to
the benchmark result in Figure 4. However, the
FWI result is losing intensity in the gas cloud,
especially at depth, and it has enhanced edge
artifacts.
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minimum. Quality control of FWI that relies principally upon re-
ductions in the objective function, increases in the zero-lag cross-
correlation of predicted and observed data, or similar measures of
data misfit, will not easily detect that this inversion has gone astray.

Depth migration

Following the tests described above, we re-ran pure FWI begin-
ning from the tomography model, and we re-ran AWI beginning
from an approximately 1D model built by heavily smoothing the
tomography model after removing the gas cloud (Ravaut et al.,
2017). The anisotropy model was as used for the previous tests.
Offsets from 1.2 to 10.5 km were included and late arrivals at near-
est offsets were muted. In total, 100 iterations were run for AWI and
50 iterations for FWI, inverting every source at each iteration over a
frequency range of 3–6 Hz. These inversions used conjugate gra-
dients and a quadratic step length. Unlike the previous tests, no spa-
tial preconditioning or other approximation to the diagonal Hessian
was applied during AWI. The models are lightly smoothed as the
inversion proceeds to mitigate the acquisition footprint.
Figure 8 shows vertical slices through the relevant starting and re-

covered models for FWI and AWI. Although the two methods begin
from quite different starting points, the resultant gas clouds that they
produce are similar in geometry and magnitude. We then used these
four models to migrate the pz-summed demultipled deghosted data

using 3D prestack Kirchhoff VTI ray-traced multi-arrival depth mi-
gration. The velocity models are not unduly complicated, and more-
accurate migration schemes, such as reverse time migration, have not
produced noticeably more accurate migrations in our previous stud-
ies. Although attenuation is high within the gas cloud, we did not
compensate the data for the amplitude or dispersive effects of attenu-
ation, and we did not take attenuation into account during either FWI/
AWI or depth migration. We might then expect that the velocity ob-
tained by low-frequency FWI would be slower within the highly at-
tenuating gas cloud than that required for optimal depth migration.
We might also expect that anisotropy within the gas cloud would
differ from that outside; we did not include any such changes in
anisotropy during either FWI/AWI or migration.
Vertical slices through these migrations are shown in Figures 9

and 10, the latter with the corresponding velocity model superim-
posed. Figure 11 provides a quantitative assessment of the accuracy
of these migrations using color-coded measures of automatically
picked residual moveout of primary subcritical reflections on
common-image gathers. Neither FWI nor AWI seek to flatten gath-
ers explicitly; rather, they seek to minimize the mismatch between
the observed and predicted data sets. Consequently, gather flatness
provides an independent test of the validity of the velocity model
assuming that the anisotropy model is correct. In Figure 11, red
picks represent under-migrated gathers indicating that the model
velocity is too high, blue picks represent over-migrated gathers

Figure 6. Models recovered using a low starting
frequency and a simple 1D starting model. Left:
FWI. Right: AWI. The AWI result is similar to
Figures 4 and 5, but it is under saturated in the
deeper parts of the gas cloud. In contrast, the
FWI result is failing badly, and the gas cloud is
only partly recovered even at a shallow depth.

R456 Guasch et al.

D
ow

nl
oa

de
d 

06
/2

6/
20

 to
 9

0.
22

1.
24

9.
78

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



indicating that the model velocities are too low, yellow picks re-
present flat gathers, and white regions indicate that no events were
automatically pickable.
Clearly, the migrations using the FWI and AWI results (Figure 8c

and 8d) are significantly better than either the tomography or the sim-
ple 1Dmodels (Figure 8a and 8b), neither of which is able to focus the
image adequately beneath the gas cloud. The gathers are clearly flatter
beneath the gas cloud in the tomography model than in the simple 1D
model, but despite this, there is no especially clear improvement in the
appearance or focusing of the stacked migration in Figure 8a relative
to Figure 8b. Comparing the FWI and AWI-based migrations,
these are similar. There are fewer conflicting dips in the AWI result
beneath the gas cloud than in the FWI result, and the migrations
differ with respect to the low-frequency subhorizontal events seen
within the anticline beneath the gas cloud; the provenance of these
reflections is unknown — they are undrilled and are stronger, more
continuous, and more nearly horizontal on the AWI migration.
Compared with FWI, AWI recovers a good gas velocity down to

approximately 2.8 km depth giving the same quality of residual
moveout (RMO) picks in Figure 11c and 11d. On the FWI model,
artifacts associated with the finite aperture of the acquisition are
visible on the model shown by the ellipses in Figures 8c and
10c. On the AWI model, this imprint of the acquisition is less
pronounced. The artifacts on the AWI results are of a smaller wave-
length than those observed on the FWI results.

In Figure 11, all the RMO maps show red picks on the right side
of the gas cloud between approximately 600 and 1300 m in depth.
Neither FWI nor AWI improve the gather flatness in this region,
and, here, the tomography result appears to be somewhat flatter
than either of the inversion results. This behavior suggests that
these under-migrated gathers are likely related to inaccuracies
in the anisotropic model, and that the difference between delta
and epsilon should be smaller than we have assumed. Reflection
tomography will attempt to map such an anisotropy error into the
velocity field in a way that minimizes the overall RMO, whereas
waveform inversion will tend to map the error in a way that min-
imizes the data misfit — both are wrong. The proper way to ad-
dress this is to improve the anisotropy model, for example, by
inverting for the difference between delta and epsilon as part of
the waveform inversion. We have not explored that approach here,
but have shown it to work elsewhere (Debens et al., 2015).

DISCUSSION

AWI and FWI results are similar when starting from a model and
at frequencies that are not cycle skipped (Figure 4). However, when
the starting model is less accurate and/or when sufficiently low
frequencies are not present in the field data, AWI can still proceed
successfully when FWI cannot. Figures 4–7 demonstrate that AWI
can recover a good velocity model from this field data set when the

Figure 7. Models recovered using a high starting
frequency and a simple 1D starting model. Left:
FWI. Right: AWI. Above the chalk, the AWI result
is similar to Figure 6, and it is still providing good
recovery of the gas cloud. The FWI result is now
badly affected by cycle skipping and is signifi-
cantly worse than the starting model.
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effective distance between the starting and true models is about two
to three times larger, in terms of the starting frequency, than conven-
tional FWI can tolerate. We have applied FWI and AWI to a range
of marine field data sets, ocean-bottom and towed-streamer, and we
have found that this quantitative conclusion appears to hold over a
wide range of circumstances. In practice, this means that AWI can
invert successfully when the usable starting frequency that can be
tolerated by FWI is approximately doubled, when the cumulative
errors in the start model that can be tolerated by FWI are approx-
imately doubled, or when there is some equivalent combination of
both effects. For many marine data sets, this means that AWI can
tolerate towed-streamer data starting from time-migrated stacking
velocities or following only the simplest reflection tomography,
whereas FWI often requires more careful QC, time and/or depth
windowing, enhanced low-frequency noise reduction, and multiple
passes of structurally guided reflection tomography to proceed
successfully. AWI is not a cure for all the problems that can beset
waveform inversion, but in real marine data sets, it often spans the
critical region that can make an otherwise difficult problem tractable
and practical.

Figure 12 shows a comparison of the impulse responses produced
by FWI and AWI in a constant-velocity model. It shows the raw
gradient of the objective function with respect to the model param-
eters for a single source and single receiver in a constant-velocity
model. The overall shape of this figure does not depend at all
strongly upon either T or μ; it does depend upon the bandwidth
of the source, but not upon its phase spectrum. The gradient gen-
erated by a plurality of sources and receivers would be composed of
a summation of gradients similar to this one. In Figure 12, the red
central region represents updates to the model that have the correct
sign; if there were many sources and receivers, then this central re-
gion would dominate the gradient and the whole model would be
updated appropriately. The blue regions in Figure 12 represent side-
bands that have the wrong sign for the model update. If there were
many sources and receivers, then these side bands would tend to be
suppressed over much of the model by destructive interference, but
toward the survey edges, they would tend to interfere constructively
to produce edge artifacts in the model having the wrong sign. These
edge artifacts will always tend to appear toward the lateral edges of
a model, and where the update is dominated by refracted arrivals,
they will also tend to appear beneath the survey, where the finite
source-receiver offset limits the depth of penetration of the refrac-
tions. In a simple model, with turning refracted arrivals and a fixed

Figure 8. Vertical slices through velocity models used for migra-
tion, from the seabed to a depth of 4000 m. (a) Tomography model
used as the starting model for FWI. (b) Simple smooth model with-
out a gas cloud used as the starting model for AWI. (c) FWI-recov-
ered model. (d) AWI-recovered model. The FWI result shows edge
effects indicated by the ellipses and within the underlying fast chalk
layer. Regularization during AWI has removed the previously vis-
ible footprint at the level of the top chalk. Lowered AWI-recovered
velocities below the gas cloud are confirmed in the wells.

Figure 9. Prestack 3D Kirchhoff depth migrations corresponding to
the four models shown in Figure 8. The tomography and simple
starting models produce poorly focused migrations. The FWI-
and AWI-based migrations are significantly improved. The FWI
and AWI results differ from each other principally with respect
to the low-frequency subhorizontal events seen within the anticline
beneath the gas cloud; the provenance of these reflections is un-
known — they are undrilled and are stronger, more continuous,
and more nearly horizontal on the AWI migration.
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acquisition geometry, these artifacts will tend to produce a bowl
surrounding an otherwise properly updated model.
In Figure 12, the AWI gradient has a tighter central red region

than FWI. This will tend to improve the spatial resolution of
AWI, while at the same time tending to enhance the local acquis-
ition footprint produced by finite spacing between sources and/or
receivers. The AWI gradient also has oscillatory side bands with
variable wavelengths; these will tend to interfere destructively even
toward the survey edges. In contrast, FWI has a broader central re-
gion than AWI, and this will tend to protect against an acquisition
footprint produced by sparse sources/receivers, but it will also tend
to degrade the spatial resolution with respect to AWI. The FWI gra-
dient also has a single strong reversed-sign blue sideband, which
will tend to interfere constructively when there are many source-
receiver pairs, and so it will tend to produce stronger artifacts to-
ward the survey edges, and below the deepest refracted arrivals.
In summary, Figure 12 suggests that AWI will tend to display a

stronger acquisition footprint produced by finite shot and receiver
spacing, and FWI will tend to produce a stronger edge-artifact lat-
erally, and in depth, produced by finite source and receiver array
apertures. All of these effects are displayed in Figure 4. The reduc-
tion of edge effects at depth means that the effective penetration
provided by AWI can often be significantly greater than that of
conventional FWI, extending well below the depth of the deepest
penetration predicted by ray tracing. The results presented here
show this effect in part, but the dramatic velocity contrast present
at the top chalk in this survey complicates the outcome.

In practice, although Figure 12 suggests that there should be an
effect, we do not typically see a marked difference in the spatial
resolution between FWI and AWI in field data. FWI and AWI
use different measures of misfit. The simple difference used by
FWI is a purely local measure that compares the predicted and ob-
served values data point by data point. This typically means that,

Figure 10. Superposition of depth migrations from Figure 9 and
their corresponding velocity models from Figure 8.

Figure 11. Color-coded RMO on common-image gathers corre-
sponding to the migrations shown in Figure 9. Red represents
under-migrated gathers indicating that the model is too fast, blue rep-
resents over-migrated gathers indicating that the model is too slow,
yellow represents flat gathers, and white has no autopickable events.

Figure 12. Gradients produced by a single source-receiver pair in a
constant-velocity model for FWI (left) and AWI (right). These re-
present the model updates that would be applied by each of the al-
gorithms, to a constant-velocity model, when starting from a
minimally perturbed constant-velocity model, using just one seis-
mic trace, without preconditioning or regularization. The absolute
amplitudes of the two gradients, the orientation of the figure, and its
horizontal and vertical scale lengths, are all arbitrary. Red regions
have the correct sign for the update; blue regions have the reverse
sign.
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provided the data are not cycle skipped, FWI will tend to phase lock
the predicted and observed data tightly together. In contrast, the
measure of misfit used by AWI is global within each trace so that
every data point influences every other. This provides the ability to
overcome cycle skipping, but it will not phase lock the data locally
if one trace contains events that are not present in the other. Instead,
it will seek the best least-squares compromise that minimizes its
Wiener-filter-based misfit function. The AWI result will in conse-
quence lose some of its theoretically higher resolution. In practice,
the two effects seem to be of similar importance so that the practical
resolution provided by FWI and AWI become rather similar. In typ-
ical work flows, we run AWI initially, moving to pure FWI and to
higher frequencies as the inversion proceeds.
A common method to assess the quality of waveform inversion

results is to compare the final synthetic data with the observed data.
Figure 13 shows such a data comparison for all of the recovered
models. Here, each panel shows a common-receiver gather over
the entire survey, sorted by offset. The synthetics generated by
all of the inverted models appear rather similar, and all provide
a reasonable fit to the field data even though several of the synthetic
data sets are significantly cycle skipped. Waveform inversion is de-
signed to reduce the mismatch between observed and predicted
data, and so it will produce models that generate synthetics that re-
semble the field data. Consequently, matches to the field data must
be used with care when assessing model quality. An obvious
mismatch is a likely indication of a poor inversion outcome,
but a superficial lack of an obvious mismatch to the final syn-
thetic data may not necessarily provide an indication of a good
outcome.

CONCLUSION

We have systematically tested the AWI method, introduced by
Warner and Guasch (2014, 2016), on a 3D ocean-bottom field data

set. The results demonstrate that AWI here is insensitive to cycle-
skipping produced by limited low-frequency bandwidth of the
observed data. Consequently, AWI can proceed successfully in cir-
cumstances for which conventional FWI performs poorly or fails
entirely. AWI will normally require more iterations to converge
if the initial model is further from the true solution or when the
starting frequency is increased. In the data set examined here,
AWI is able to reconstruct a well-resolved and accurate velocity
model starting from a simple 1D or 1D-like initial velocity model.
AWI has less sensitivity to the finite extent of the acquisition geom-
etry and to the finite maximum source-receiver offset, and it does
not show the strong edge artifacts from which conventional FWI
can suffer. AWI does, however, have increased sensitivity to finite
source and receiver spacing such that a fine-scale acquisition foot-
print can appear in the recovered model; this footprint is not difficult
to remove by regularization during AWI, but in some survey geom-
etries, AWI can require more closely spaced data to be used at each
iteration, which may increase the computational cost.
The recovered AWI model migrates the field data more accu-

rately than does the tomographic model, and at least as well as
tomography followed by conventional FWI. When using AWI in
this way, the velocity model is built, including the starting model,
entirely from raw unprocessed field data without recourse to
reflection tomography and with little manual intervention required.
In practical applications, AWI would normally be followed by
conventional FWI to maximize the resolution and ensure that the
recovered model is properly phase locked to the field data.
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