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Summary 
 
We present a new method for performing full-waveform 
inversion that appears to be immune to the effects of cycle 
skipping – Adaptive Waveform Inversion (AWI).  The 
method uses Wiener filters to match observed and predicted 
data.  The inversion is formulated so that the model is 
updated in the direction that drives these Wiener filters 
towards delta functions at zero lag, at which point the true 
model has been recovered.  The method is computationally 
efficient, it appears to be universally applicable, and it 
recovers the correct model when conventional FWI fails 
entirely. 
  
Introduction 
 
Full-waveform inversion (FWI) is a technique for building 
highly accurate models of physical properties in the 
subsurface, and especially for building high-resolution p-
wave velocity models.  FWI operates by attempting to find 
an earth model that minimizes the difference between a 
predicted and an observed pre-stack dataset, or less-
commonly that maximizes the zero-lag of the temporal 
cross-correlation of the two datasets.  FWI has had some 
spectacular successes in improving the quality of 
subsequent depth migrations, and in providing directly 
interpretable images of physical properties in both the 
overburden and at the reservoir.  
 
Despite its growing success, FWI suffers from a 
fundamental problem of cycle skipping.  This occurs when 
the inversion produces a match between predicted and 
observed data that is shifted in time by one or more wave 
cycles.  Since FWI is a local minimization scheme, these 
cycle-skipped models represent local minima in the 
objective function into which the inversion can easily fall.  
Practical prevention of cycle skipping involves the use of 
low frequencies in the field data, starting the inversion from 
an accurate initial model following intensive model 
building using reflection travel-time tomography, and 
applying rigorous quality control during FWI. 
 
In this paper, we present a new method for performing 
waveform inversion that appears to be entirely immune to 
the effects of such cycle skipping.  Since the method works 
by adapting one dataset to another using Wiener filters, we 
refer to it as Adaptive Wavefield Inversion or AWI.  So far 
as we have been able to discover, AWI seems to have no 
disadvantages that are not also suffered by conventional 
FWI, it requires a similar total compute effort and similar 
computer codes, and it has some additional advantages 
beyond its ability to avoid the effects of cycle skipping. 

  
Here we explain the method and the rationale behind it, and 
present a simple synthetic demonstration.  In companion 
papers, we examine the performance of AWI on reflection-
dominated data, and apply it to a 3D field dataset. 
 
Method 
 
Conventional FWI compares observed and predicted data 
by subtracting one from the other to generate a residual 
dataset, and then minimizes the sum of the squares of these 
residuals.  Because seismic data are oscillatory, this 
approach necessarily leads to an objective function that has 
many secondary local minima.  AWI uses a different means 
to compare two datasets.  It operates trace-by-trace, and it 
uses a least-squares convolutional filter, a Wiener filter, to 
match the predicted to the observed data.  If this filter is 
acausal and significantly longer than the trace length, then 
the match that it provides will be extremely close.  As we 
will see, it is the closeness of this matching that removes 
cycle skipping from the AWI formulation. 
 
AWI begins by generating a dataset of predicted traces.  
For each of these traces, we design a separate Wiener filter 
that converts a predicted trace into its corresponding 
observed trace.  The coefficients that form these filters are 
necessarily functions of the current model and of the field 
data.  Now, if a particular model provides a perfect match 
to the field data, then each of these Wiener filters will 
necessarily consist of a delta function of unit amplitude at 
zero lag.  We can therefore set up an objective function that 
measures the deviation of each these filters from a zero-lag 
delta function, and use a conventional adjoint formulation 
to find the earth model that minimizes this functional. 
   
The mathematics of the method are relatively straight-
forward, and it leads to formulations that are similar to 
conventional FWI.  Its essential features are these:  For 
each source in the field data, a forward wavefield is 
calculated.  The predicted and observed data are matched at 
each receiver, and the resultant Wiener filter is used to 
generate an adjoint source which is back-propagated into 
the model.  The forward and backward wavefields are cross 
correlated at every point in the subsurface, and the zero 
spatial and temporal lag of this cross-correlation is stacked 
over all sources to form the gradient of the objective 
function.  The only significant difference in this 
formulation between AWI and FWI is in the formation of 
the adjoint source which is outlined below for AWI.   
 
There are various objective functions that can be minimized 
or maximized in AWI.  It is possible to use filters that 
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Adaptive Waveform Inversion 

match the predicted to the observed data, or that do the 
reverse.  In the analysis below, we consider the reverse 
scheme since it leads to simpler final expressions; the 
forward scheme though is closely analogous.  The simplest 
useable form of AWI employs the objective function: 

   ݂	 ൌ 	 భ
మ
	
మ||ܟ܂||

మ||ܟ||
          (1) 

 
where w is an acausal Wiener filter that transforms a single 
observed trace into its equivalent predicted trace, T weights 
the coefficients of this filter by the absolute value of their 
temporal lag, and the summation implied by the L2 norm is 
over all temporal lags and all traces.   
 
This objective function is designed to penalize Wiener 
coefficients that lie far from zero-lag, and so it should be 
minimized.  This form for the objective function does not 
seek to match absolute amplitudes between pairs of traces; 
other forms for the objective function can be devised that 
achieve this, and more sophisticated forms of weighting 
and normalization are possible.  The normalization term in 
the denominator is important; without it, the functional will 
tend to act to minimize all the coefficients which is 
equivalent to minimizing the predicted data by suppressing 
all possible arrivals, a result that will not lead towards the 
true earth model. 
 
With this formulation, the adjoint source	δs for one source-
receiver pair is given by 

 δs	ൌ	 డ௙
డܘ
	ൌ	۲	ሺ۲୘۲ሻିଵ 	ቀ܂

మିଶ௙۷

ܟ౐ܟ
ቁ 	w         (2) 

 

where ۲	 is a matrix that represents convolution by the 
observed data, and p is the predicted data.  Reading this 
expression from right to left, in order to compute the 
adjoint source for one receiver, we must first find the 
Wiener filter w, normalize it by its inner product wTw, 
weight the coefficients using a function of temporal lag 
ሺ܂ଶ െ 2݂۷ሻ, deconvolve this using the auto-correlation 
ሺ۲୘۲ሻ of the observed data, and finally convolve the result 
with the original data ۲.  This operation is performed trace-
by-trace, and it is computationally efficient.        
 
Immunity to cycle skipping 
 
Analyzing the adjoint source in equation (2), suggests the 
reason why the AWI formulation is immune to the effects 
of cycle skipping.  Without the weighting, amplitude 
normalization and deconvolution, this expression is simply 
a Wiener filter convolved with an observed trace, and so it 
closely matches the predicted data.  The adjoint and the 
predicted data are consequently always in phase, and there 
can be no cycle skipping.  The deconvolution and the 
normalization of the adjoint do not change its phase, and 

the weighting simply adjusts the adjoint according to how 
well the original predicted and observed data match. 
 
Although it is a data-domain method, AWI has important 
features in common with image-domain approaches such as 
wave-equation migration velocity analysis (WEMVA); it is 
these features that make it immune to cycle skipping.  
 
WEMVA methods typically extend the model in some non-
physical way, setting up the inversion so that models 
evolve towards physical outcomes.  In conventional 
WEMVA, the model is extended by introducing sub-
surface offset.  This represents a non-physical scattering in 
the subsurface, whereby an incident wavefield at one 
location generates a coeval scattered wavefield at another.  
The inversion is then formulated to focus the energy to zero 
sub-surface offset, thus producing a physical outcome in 
which the incident and scattered wavefields are coincident. 
 
AWI also extends the model in an analogous non-physical 
way.  The Wiener filter can be regarded as a means of 
redistributing energy, non-physically, in time.  In this case, 
energy arriving at a receiver at a particular time produces a 
signal at that receiver that is distributed across earlier and 
later times.  These non-physical arrivals disappear when the 
filter becomes a zero-lag delta function, corresponding to a 
physical outcome.  WEMVA involves non-physical action 
at a distance in the sub-surface, whereas AWI involves 
non-physical interaction across time at the receivers.   
 
This insight also reveals why AWI is immune to cycle 
skipping.  The data p predicted by a physical model m can 
be cycle skipped with respect to d.  Considering the 
forward formulation of AWI, the data predicted by the 
extended model (m and w combined) is instead the 
convolution of w with p which is not cycle skipped since it 
is always a close match to the observed data d.  We can 
therefore regard AWI as an analogue of WEMVA that 
seeks to focus energy – all energy and not only primary 
reflections – at zero temporal lag just as WEMVA seeks to 
focus primary reflections at zero sub-surface offset.  
 
A different view of the way that AWI operates can be 
obtained by recalling that the wave equation represents a 
linear relationship between the source and the wavefield.  
Thus any observed seismic trace, generated by a point 
source, can always be predicted exactly by any non-
pathological subsurface model simply by adjusting the 
effective source that is used to model it.  The required 
source may be acausal, and it may be of infinite duration.   
 
The Wiener filter used in AWI then simply provides the 
best least-squares estimate of a finite-duration version of 
this source.  The effective sources required for every trace 
in the observed dataset will normally be different.  AWI is 
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Adaptive Waveform Inversion 

configured so that the inversion drives all these sources 
towards the same source – the actual source that was used 
to acquire the physical data.  AWI is then not cycle skipped 
because the effective sources are always adjusted by the 
Wiener filters so that the observed data are well matched by 
the predicted data; there is no phase difference between 
observed and predicted, and so no cycle skipping occurs. 
 
Application to a synthetic model 
 
To demonstrate the method, we apply it to the well-studied 
Marmousi model, Figure 1.  Data from this model are easy 
to invert using most FWI schemes provided that the starting 
model is a smoothed version of the true model, that the 
inversion begins at very low frequencies, and that the data 
are noise free.  To provide a realistic test therefore, we here 
use a simple one-dimensional starting model that provides 
only a poor match to the true model, we run the inversion 
using data that have a dominant frequency of 10 Hz (inset 
in Figure 2), we run the inversion using the full data 
bandwidth without beginning at lower frequencies, and we 
add noise to the initial data.   
 
For the demonstration, we use a vanilla version of steepest-
descent FWI with no model regularization.  We apply 
trace-by-trace amplitude normalization to both the observed 
and predicted data, and we spatially precondition the 
gradient by dividing it locally by the energy in the incident 
wavefield averaged over all times and all sources. Beyond 
that, we use no enhancements or additional features.   
 
Figure 1(a) shows the true model and Figure 1(b) shows the 
starting model.  We include free-surface multiples, primary 
reflections and wide-angle turning arrivals in the data to a 
maximum offset of 7 km.  At 10 Hz, the majority of the 
data predicted by the starting model are cycle skipped 
(Figure 2); at later travel times this mismatch can be more 
than one cycle.   
 
Figure 1(c) shows that conventional FWI is unable to 
recover the correct model at all under these circumstances.  
Cycle skipping dominates the data, and the recovered 
model is a poor match to the true model.  The background 
model is not recovered correctly, velocities are adjusted in 
the wrong direction within the shallow high-velocity fault 
blocks, and the deeper structure cannot be properly focused 
by the starting model.    
 
In contrast, Figure 1(d) shows the results of applying AWI 
to these data using an identical inversion scheme.  AWI is 
evidently not affected by the cycle skipping, and it iterates 
successfully to recover the true model.  Its accuracy is 
affected only by the finite bandwidth, finite aperture, 
acquisition geometry, and finite noise levels of the incident 
wavefield.  When AWI runs, deep features are initially 

misplaced in depth, but as the inversion proceeds to 
improve the model, these features move smoothly and 
continuously towards their correct depths.  AWI does not 
follow a convoluted path from starting to final model, and 
this property contributes to its computational efficiency. 
 
Provided that there are refracted arrivals at the target depth, 
the final outcome of AWI is affected not at all by the 
quality of the starting model.  In a companion paper we 
show that the method also has advantages for reflection 
FWI.  Although the final recovered model is not affected 
by the starting model, the number of iterations required to 
reach that final model does increase as the distance that the 
method has to travel from its starting point increases.  It 
will always therefore be computationally advantageous to 
start as close to the true model as possible.          
 
Conclusions 
 
AWI appears to be capable of recovering the correct global 
solution in circumstances where conventional FWI fails 
entirely.  The method works by adopting some of the 
characteristics of WEMVA while retaining the essential 
elements of an FWI scheme, and by doing so it becomes 
effective while remaining computationally efficient.   
 
Unlike most WEMVA-based schemes, adaptive FWI does 
not require computationally expensive non-zero-lag 
convolutions in the subsurface, it does not require the 
solution of a computationally expensive extended wave 
equation, nor does it require primary-only input data.  AWI 
can operate with refracted energy, with primary reflections, 
and with multiples.  Unlike other formulations for 
overcoming cycle skipping, AWI does not degrade in 
complex models that involve many interfering events. 
 
Wiener filters are well understood, and the simple scheme 
that we have outlined here can, in practice, be extended in 
obvious and productive ways to take advantage of that 
understanding.  The filters can for example be varied with 
time, be regularized across receivers, or be multi-
dimensional.  It is possible to match predicted to observed, 
observed to predicted, or both datasets to each other.  
 
So far as we have been able to tell, AWI has no dis-
advantages that are not also features of conventional FWI.  
It has a range of advantages over conventional FWI of 
which the avoidance of the detrimental effects of cycle 
skipping is the most significant.  
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Figure 1:  Application of Full-Waveform Inversion and Adaptive Waveform Inversion to the 2D Marmousi model for a dataset 
with a dominant frequency of 10 Hz, a poor one-dimensional starting model, and free-surface multiples, ghosts, and random 
noise in the input data.  At 10 Hz, the data generated by this starting model are badly affected by cycle skipping so that 
conventional FWI fails entirely while AWI continues to be accurate and effective. 
 
 
 

 

Figure 2:  A synthetic shot record generated in (a) the starting and (b) the true model.  The crosses on both records are the same.  
The starting data are cycle skipped with respect to the true mode.  The inset shows the power spectrum of the true data in (b). 
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